53,833 research outputs found

    Measurement-induced nonlocality over two-sided projective measurements

    Full text link
    Measurement-induced nonlocality (MiN), introduced by Luo and Fu [Phys. Rev. Lett. 106(2011)120401], is a kind of quantum correlation that beyond entanglement and even beyond quantum discord. Recently, we extended MiN to infinite-dimensional bipartite system [arXiv:1107.0355]. MiN is defined over one-sided projective measurements. In this letter we introduce a measurement-induced nonlocality over two-sided projective measurements. The nullity of this two-sided MiN is characterized, a formula for calculating two-sided MiN for pure states is proposed, and a lower bound of (two-sided) MiN for maximally entangled mixed states is given. In addition, we find that (two-sided) MiN is not continuous. The two-sided geometric measure of quantum discord (GMQD) is introduced in [Phys. Lett. A 376(2012)320--324]. We extend it to infinite-dimensional system and then compare it with the two-sided MiN. Both finite- and infinite-dimensional cases are considered.Comment: 12 page

    A sharp stability criterion for the Vlasov-Maxwell system

    Full text link
    We consider the linear stability problem for a 3D cylindrically symmetric equilibrium of the relativistic Vlasov-Maxwell system that describes a collisionless plasma. For an equilibrium whose distribution function decreases monotonically with the particle energy, we obtained a linear stability criterion in our previous paper. Here we prove that this criterion is sharp; that is, there would otherwise be an exponentially growing solution to the linearized system. Therefore for the class of symmetric Vlasov-Maxwell equilibria, we establish an energy principle for linear stability. We also treat the considerably simpler periodic 1.5D case. The new formulation introduced here is applicable as well to the nonrelativistic case, to other symmetries, and to general equilibria

    Nuclear β+\beta^+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing

    Full text link
    Self-consistent proton-neutron quasiparticle random phase approximation based on the spherical nonlinear point-coupling relativistic Hartree-Bogoliubov theory is established and used to investigate the β+\beta^+/EC-decay half-lives of neutron-deficient Ar, Ca, Ti, Fe, Ni, Zn, Cd, and Sn isotopes. The isoscalar proton-neutron pairing is found to play an important role in reducing the decay half-lives, which is consistent with the same mechanism in the β\beta decays of neutron-rich nuclei. The experimental β+\beta^+/EC-decay half-lives can be well reproduced by a universal isoscalar proton-neutron pairing strength.Comment: 12 pages, 4 figure

    Fractional magnetic Sobolev inequalities with two variables

    Get PDF
    A fractional magnetic Sobolev inequality with two variables and critical exponents is considered in this paper, and the best constant in the inequality is determined. As an application of the inequality, we establish an existence result for the ground state solutions to a fractional magnetic critical system

    Conditions for Nondistortion Interrogation of Quantum System

    Full text link
    Under some physical considerations, we present a universal formulation to study the possibility of localizing a quantum object in a given region without disturbing its unknown internal state. When the interaction between the object and probe wave function takes place only once, we prove the necessary and sufficient condition that the object's presence can be detected in an initial state preserving way. Meanwhile, a conditioned optimal interrogation probability is obtained.Comment: 5 pages, Revtex, 1 figures, Presentation improved, corollary 1 added. To appear in Europhysics Letter

    Broadband super-Planckian thermal emission from hyperbolic metamaterials

    Full text link
    We develop the fluctuational electrodynamics of metamaterials with hyperbolic dispersion and show the existence of broadband thermal emission beyond the black body limit in the near field. This arises due to the thermal excitation of unique bulk metamaterial modes, which do not occur in conventional media. We consider a practical realization of the hyperbolic metamaterial and estimate that the effect will be observable using the characteristic dispersion (topological transitions) of the metamaterial states. Our work paves the way for engineering the near-field thermal emission using metamaterials

    Neutrino Masses, Lepton Flavor Mixing and Leptogenesis in the Minimal Seesaw Model

    Full text link
    We present a review of neutrino phenomenology in the minimal seesaw model (MSM), an economical and intriguing extension of the Standard Model with only two heavy right-handed Majorana neutrinos. Given current neutrino oscillation data, the MSM can predict the neutrino mass spectrum and constrain the effective masses of the tritium beta decay and the neutrinoless double-beta decay. We outline five distinct schemes to parameterize the neutrino Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis via leptogenesis are investigated in some detail by taking account of possible texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on the CP-violating asymmetry in the decay of the lighter right-handed Majorana neutrino. The effects of the renormalization-group evolution on the neutrino mixing parameters are analyzed, and the correlation between the CP-violating phenomena at low and high energies is highlighted. We show that the observed matter-antimatter asymmetry of the Universe can naturally be interpreted through the resonant leptogenesis mechanism at the TeV scale. The lepton-flavor-violating rare decays, such as μ→e+γ\mu \to e + \gamma, are also discussed in the supersymmetric extension of the MSM.Comment: 50 pages, 22 EPS figures, macro file ws-ijmpe.cls included, accepted for publication in Int. J. Mod. Phys.
    • …
    corecore